
Computer Science Worksheet—Code Tracing

BACKGROUND
Computing programs consist of a series of instructions that are executed by a computer. These
instructions take data stored in memory and manipulate it to produce the results of the program.
Programming requires an understanding of how the computer manipulates data, but there is often a
difference in what the programmer expects the program she has written will do and what the program
instructions actually do. The process of correcting a program to produce the desired results is called
debugging.

One way of debugging consists of performing a code trace, following the instructions that one has written
one line at a time, and tracking by hand what is happening in memory. In this activity we’ll look at a simple
program and see how a code trace is performed. Then you’ll perform your own code trace on another
program provided here.

THE adder.py PROGRAM
The source code for the adder.py program is given here:

1
2
3
4
5
6
7
8
9

10
11
13
13
14

def add(n1, n2):
 """Adds two values and returns result.
 """
 result = n1 + n2
 return result

def main():
 x = 3
 y = 4
 solution = add(x,y)
 print("The sum of",x,"and",y,"is:", solution)

main()

If you’re very familiar with Python this program will look fairly straightforward: the main program takes
the numbers stored in variables x and y and sends them in as parameter values to the function called add.
That function adds the numbers together and returns the result to the main program which then prints out
the result, in this case the value 7.

What happens in the computer’s memory as this program is running can be shown by following the
program’s execution line by line and creating a code trace diagram off to one side. This code trace identifies
which elements of the program are actively being stored in memory and what the values of those elements
are.

Let’s see how we can create a code trace by hand.

Computer Science Worksheet—Code Tracing

A CODE TRACE EXAMPLE
To perform a manual (paper-and-pencil) code trace I’m going to look at a printout of the program and
examine it line by line, even going so far as to place a paperclip or some other physical token next to the
line that I’m currently executing—this helps to keep my place and makes sure that I don’t skip any lines. As
each line gets executed I’m going to write down to the right of the program the state of any memory
locations.

1
2
3
4
5
6
7
8
9

10
11
13
13
14

def add(n1, n2):
 """Adds two values and returns result.
 """
 result = n1 + n2
 return result

def main():
 x = 3
 y = 4
 solution = add(x,y)
 print("The sum of",x,"and",y,"is:", solution)

main()

Let’s begin.

1. I’ll begin at line 1, but see that it’s a definition for a function add() that hasn’t been called yet, so
I’m going to skip over that section.

2. The next line I could execute is at line 7, but that, too, is a function, main(), that hasn’t been called
yet, so I’m going to skip over that section as well.

3. Ah, line 13 is the first line that I can execute, and it’s a call on the main()
function. I’m going to create a box on the right side of my paper that will
track what happens in this main() function of the program. I’m also going
to move my paperclip/marker up to line 7 of the program to indicate that I
have now entered the main function.

4. Going down to line 8, I see that the variable x has been set to the value 3, so I’m going to record
that information in my main box. There are a number of strategies for
indicating this relationship, but I’m going to use a relatively simple one that
simply uses a box with the label x to the left and the value 3 that is referred
to by that label in the box.

5. Moving my marker down to line 9, I see that y is associated with the value 4.
I’m modifying my main box appropriately.

Computer Science Worksheet—Code Tracing

6. Line 10 calls the add() function with the values of x and y as parameters. In other words, I’m
sending in the values of 3 and 4. Note that when I call this function, those values are assigned to
the parameter variables that are listed in the function header at line 1. My main function still has the
variables x and y with the values 3 and 4, but I also have the add function now, with its own
variables and their values. Here is what the memory looks like now.

7. We’ll skip lines 2 and 3 in the program because they’re comments. Line 4 adds the numbers in n1
and n2 together and stores them in a new variable called result. What does the memory look like
now?

8. Moving to line 5, we see that we’re going to return the value stored in result. We can formally
identify that return value in our diagram like this (next page):

Computer Science Worksheet—Code Tracing

9. That return value is sent back to the main program, line 10, where the function was called from,
and stored in the variable solution. The state of the add function—its variables and their values
—is removed from memory, so our diagram of the computer’s memory now just looks like this:

And that’s it. For a small-scale problem like this it’s almost more trouble than it’s worth to go through this
process, but if you’re having difficulties with a program, being able to do a code trace—either by hand or
using a debugger—is a vital skill to have.

Computer Science Worksheet—Code Tracing

ANOTHER CODE TRACE
Here’s another program. Perform a pencil-and-paper code trace on this program to identify the states of
the program, its variables, and their values as the program runs.

1
2
3
4
5
6
7
8
9

10
11
13
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

"""
quadratic.py
Calculates solutions to quadratic equations
"""

import math

def discriminant(a, b, c):
 """Calculates the discriminant
 """
 d = b * b - 4 * a * c
 return d

def main():
 coeff1 = 1
 coeff2 = -4
 coeff3 = 4
 disc = discriminant(coeff1, coeff2, coeff3)
 if disc == -1:
 print("No real results")
 elif disc == 0:
 print("Single solution: ", -b / (2 * a))
 else:
 print("Two solutions: ", (-b + math.sqrt(disc)) / (2 * a), \
 (-b - math.sqrt(disc)) / (2 * a))

main()

Computer Science Worksheet—Code Tracing

ADVANCED CODE TRACING
A more complex challenge awaits when you’re trying to analyze more dynamic code: a functional program,
for example, or a recursive function.

Perform a code trace on this recursive program. You’ll need to draw a separate box for each additional
function call, even if the previous function hasn’t completed running yet.

1
2
3
4
5
6
7
8
9

10
11
13
13
14
15
16
17
18
19
20

"""
recursive_fibonacci.py
Has a function that calculates a Fibonacci value recursively.
"""

def fib(n):
 """Recursively calculates the nth Fibonacci value
 """
 if n == 0:
 return 0 # base case
 elif n == 1:
 return 1 # another base case
 else:
 return fib(n - 2) + fib(n - 1) # recursive call

def main():
 print(fib(3))

main()

